Identification of user sessions with hierarchical agglomerative clustering
نویسندگان
چکیده
منابع مشابه
Identification of User Sessions with Hierarchical Agglomerative Clustering
We introduce a novel approach to identifying Web search user sessions based on the burstiness of users’ activity. Our method is user-centered rather than population-centered or system-centered and can be deployed in situations in which users choose to withhold personal content information. We adopt a hierarchical agglomerative clustering approach with a stopping criterion that is statistically ...
متن کاملDivisive Hierarchical Clustering with K-means and Agglomerative Hierarchical Clustering
To implement divisive hierarchical clustering algorithm with K-means and to apply Agglomerative Hierarchical Clustering on the resultant data in data mining where efficient and accurate result. In Hierarchical Clustering by finding the initial k centroids in a fixed manner instead of randomly choosing them. In which k centroids are chosen by dividing the one dimensional data of a particular clu...
متن کاملModern hierarchical, agglomerative clustering algorithms
This paper presents algorithms for hierarchical, agglomerative clustering which perform most efficiently in the general-purpose setup that is given in modern standard software. Requirements are: (1) the input data is given by pairwise dissimilarities between data points, but extensions to vector data are also discussed (2) the output is a “stepwise dendrogram”, a data structure which is shared ...
متن کامل2 Review of Agglomerative Hierarchical Clustering Algorithms
Hierarchical methods are well known clustering technique that can be potentially very useful for various data mining tasks. A hierarchical clustering scheme produces a sequence of clusterings in which each clustering is nested into the next clustering in the sequence. Since hierarchical clustering is a greedy search algorithm based on a local search, the merging decision made early in the agglo...
متن کاملDiversity-Driven Widening of Hierarchical Agglomerative Clustering
In this paper we show that diversity-driven widening, the parallel exploration of the model space with focus on developing diverse models, can improve hierarchical agglomerative clustering. Depending on the selected linkage method, the model that is found through the widened search achieves a better silhouette coefficient than its sequentially built counterpart.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Society for Information Science and Technology
سال: 2007
ISSN: 0044-7870
DOI: 10.1002/meet.14504301312